4.5 Article

Towards the next generation of simplified Dark Matter models

Journal

PHYSICS OF THE DARK UNIVERSE
Volume 16, Issue -, Pages 49-70

Publisher

ELSEVIER
DOI: 10.1016/j.dark.2017.02.002

Keywords

Dark Matter; Particle physics; LHC Dark Matter Working group; Recommendation

Funding

  1. STFC [ST/L000326/1]
  2. DOE [DE-SC0010010, DE-SC0015973]
  3. CERN Theoretical Physics Department
  4. MITP in Mainz
  5. U.S. Department of Energy (DOE) [DE-SC0015973] Funding Source: U.S. Department of Energy (DOE)
  6. STFC [ST/N003985/1, ST/L000504/1, ST/J000477/1, ST/P000258/1, ST/P000762/1, ST/K00414X/1, ST/L000326/1, ST/N000838/1] Funding Source: UKRI
  7. Science and Technology Facilities Council [ST/N003985/1, ST/L000326/1, ST/N000838/1, ST/P000258/1, ST/P000762/1, ST/L000504/1, ST/J000477/1, ST/K00414X/1] Funding Source: researchfish

Ask authors/readers for more resources

This White Paper is an input to the ongoing discussion about the extension and refinement of simplified Dark Matter (DM) models. It is not intended as a comprehensive review of the discussed subjects, but instead summarises ideas and concepts arising from a brainstorming workshop that can be useful when defining the next generation of simplified DM models (SDMM). In this spirit, based on two concrete examples, we show how existing SDMM can be extended to provide a more accurate and comprehensive framework to interpret and characterise collider searches. In the first example we extend the canonical SDMM with a scalar mediator to include mixing with the Higgs boson. We show that this approach not only provides a better description of the underlying kinematic properties that a complete model would possess, but also offers the option of using this more realistic class of scalar mixing models to compare and combine consistently searches based on different experimental signatures. The second example outlines how a new physics signal observed in a visible channel can be connected to DM by extending a simplified model including effective couplings. In the next part of the White Paper we outline other interesting options for SDMM that could be studied in more detail in the future. Finally, we review important aspects of supersymmetric models for DM and use them to propose how to develop more complete SDMMs. This White Paper is a summary of the brainstorming meeting Next generation of simplified Dark Matter models'' that took place at Imperial College, London on May 6, 2016, and corresponding follow-up studies on selected subjects. (C) 2017 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available