4.7 Review

Evaluation of Fibrin-Based Interpenetrating Polymer Networks as Potential Biomaterials for Tissue Engineering

Journal

NANOMATERIALS
Volume 7, Issue 12, Pages -

Publisher

MDPI
DOI: 10.3390/nano7120436

Keywords

interpenetrating polymer networks; fibrin; polyethylene oxide; serum albumin; fibrous hydrogel; biocompatibility; organotypic culture; tissue engineering; biomaterials

Funding

  1. French National Research Agency (Agence Nationale de la Recherche, ANR) Technologies [ANR-13-TECS-0014]
  2. Picardy region
  3. Agence Nationale de la Recherche (ANR) [ANR-13-TECS-0014] Funding Source: Agence Nationale de la Recherche (ANR)

Ask authors/readers for more resources

Interpenetrating polymer networks (IPNs) have gained great attention for a number of biomedical applications due to their improved properties compared to individual components alone. In this study, we investigated the capacity of newly-developed naturally-derived IPNs as potential biomaterials for tissue engineering. These IPNs combine the biologic properties of a fibrous fibrin network polymerized at the nanoscale and the mechanical stability of polyethylene oxide (PEO). First, we assessed their cytotoxicity in vitro on L929 fibroblasts. We further evaluated their biocompatibility ex vivo with a chick embryo organotypic culture model. Subcutaneous implantations of the matrices were subsequently conducted on nude mice to investigate their biocompatibility in vivo. Our preliminary data highlighted that our biomaterials were non-cytotoxic (viability above 90%). The organotypic culture showed that the IPN matrices induced higher cell adhesion (across all the explanted organ tissues) and migration (skin, intestine) than the control groups, suggesting the advantages of using a biomimetic, yet mechanically-reinforced IPN-based matrix. We observed no major inflammatory response up to 12 weeks post implantation. All together, these data suggest that these fibrin-based IPNs are promising biomaterials for tissue engineering.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available