4.7 Article

MAPPING THE MOST MASSIVE OVERDENSITY THROUGH HYDROGEN (MAMMOTH). I. METHODOLOGY

Journal

ASTROPHYSICAL JOURNAL
Volume 833, Issue 2, Pages -

Publisher

IOP Publishing Ltd
DOI: 10.3847/1538-4357/833/2/135

Keywords

galaxies: high-redshift; intergalactic medium; quasars: absorption lines

Funding

  1. US NSF grant [AST 11-07682]
  2. NSF [AST-1412981]
  3. Alfred P. Sloan Foundation
  4. National Science Foundation
  5. U.S. Department of Energy Office of Science
  6. University of Arizona
  7. Brazilian Participation Group
  8. Brookhaven National Laboratory
  9. University of Cambridge
  10. Carnegie Mellon University
  11. University of Florida
  12. French Participation Group
  13. German Participation Group
  14. Harvard University
  15. Instituto de Astrofisica de Canarias
  16. Michigan State/Notre Dame/JINA Participation Group
  17. Johns Hopkins University
  18. Lawrence Berkeley National Laboratory
  19. Max Planck Institute for Astrophysics
  20. Max Planck Institute for Extraterrestrial Physics
  21. New Mexico State University
  22. New York University
  23. Ohio State University
  24. Pennsylvania State University
  25. University of Portsmouth
  26. Princeton University
  27. Spanish Participation Group
  28. University of Tokyo
  29. University of Utah
  30. Vanderbilt University
  31. University of Virginia
  32. University of Washington
  33. Yale University
  34. Direct For Mathematical & Physical Scien
  35. Division Of Astronomical Sciences [1412981] Funding Source: National Science Foundation

Ask authors/readers for more resources

Modern cosmology predicts that a galaxy overdensity (e.g., protocluster) will be associated with a large intergalactic medium gas reservoir, which can be traced by Ly alpha forest absorption. We have undertaken a systematic study of the relation between Coherently Strong intergalactic Lya Absorption systems (CoSLAs), which have the highest optical depth (tau) in the tau distribution, and mass overdensities on the scales of similar to 10-20 h(-1) comoving Mpc. On such large scales, our cosmological simulations show a strong correlation between the effective optical depth (tau(eff)) of the CoSLAs and the three-dimensional mass overdensity. In spectra with moderate signal-to-noise ratio, however, the profiles of CoSLAs can be confused with individual high column density absorbers. For z > 2.6, where the corresponding Ly beta is redshifted to the optical, we have developed a selection technique to distinguish between these two alternatives. We have applied this technique to similar to 6000 sight lines provided by Sloan Digital Sky Survey III quasar survey at z = 2.6-3.3 with a continuum-to-noise ratio greater than 8, and we present a sample of five CoSLA candidates with tau(eff) on 15 h(-1) Mpc greater than 4.5x the mean optical depth. At lower redshifts of z < 2.6, where the background quasar density is higher, the overdensity can be traced by intergalactic absorption groups using multiple sight lines with small angular separations. Our overdensity searches fully use the current and next generation of Ly alpha forest surveys, which cover a survey volume of > 1 (h(-1) Gpc)(3). Systems traced by CoSLAs will yield a uniform sample of the most massive overdensities at z > 2 to provide stringent constraints to models of structure formation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available