4.4 Article

Determining Cell-surface Expression and Endocytic Rate of Proteins in Primary Astrocyte Cultures Using Biotinylation

Journal

JOVE-JOURNAL OF VISUALIZED EXPERIMENTS
Volume -, Issue 125, Pages -

Publisher

JOURNAL OF VISUALIZED EXPERIMENTS
DOI: 10.3791/55974

Keywords

Neuroscience; Issue 125; Cell-surface expression; endocytosis; biotinylation; astrocytes; aquaporin-4; plasma membrane

Funding

  1. Canadian Institute of Health Research [20R47867]

Ask authors/readers for more resources

Cell-surface proteins mediate a wide array of functions. In many cases, their activity is regulated by endocytic processes that modulate their levels at the plasma membrane. Here, we present detailed protocols for 2 methods that facilitate the study of such processes, both of which are based on the principle of the biotinylation of cell-surface proteins. The first is designed to allow for the semi-quantitative determination of the relative levels of a particular protein at the cell-surface. In it, the lysine residues of the plasma membrane proteins of cells are first labeled with a biotin moiety. Once the cells are lysed, these proteins may then be specifically precipitated via the use of agarose-immobilized streptavidin by exploiting the natural affinity of the latter for biotin. The proteins isolated in such a manner may then be analyzed via a standard western blotting approach. The second method provides a means of determining the endocytic rate of a particular cell-surface target over a period of time. Cellsurface proteins are first modified with a biotin derivative containing a cleavable disulfide bond. The cells are then shifted back to normal culture conditions, which causes the endocytic uptake of a proportion of biotinylated proteins. Next, the disulfide bonds of non-internalized biotin groups are reduced using the membrane-impermeable reducing agent glutathione. Via this approach, endocytosed proteins may thus be isolated and quantified with a high degree of specificity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available