4.8 Review

Shortened leukocyte telomere length in type 2 diabetes mellitus: genetic polymorphisms in mitochondrial uncoupling proteins and telomeric pathways

Journal

CLINICAL AND TRANSLATIONAL MEDICINE
Volume 5, Issue -, Pages -

Publisher

SPRINGEROPEN
DOI: 10.1186/s40169-016-0089-2

Keywords

Telomere length; Type 2 diabetes; Genetics; Uncoupling protein polymorphisms; Telomere-associated pathway genes

Ask authors/readers for more resources

Current debate in type 2 diabetes (T2DM) has focused on shortened leukocyte telomere length (LTL) as the result of a number of possible causes, including polymorphisms in mitochondrial uncoupling proteins (UCPs) leading to oxidative stress, telomere regulatory pathway gene polymorphisms, or as a direct result of associated cardiovascular complications inducing tissue organ inflammation and oxidative stress. There is evidence that a heritable shorter telomere trait is a risk factor for development of T2DM. This review discusses the contribution and balance of genetic regulation of UCPs and telomere pathways in the context of T2DM. We discuss genotypes that are well known to influence the shortening of LTL, in particular OBFC1 and telomerase genotypes such as TERC. Interestingly, the interaction between short telomeres and T2DM risk appears to involve mitochondrial dysfunction as an intermediate process. A hypothesis is presented that genetic heterogeneity within UCPs may directly affect oxidative stress that feeds back to influence the fine balance of telomere regulation, cell cycle regulation and diabetes risk and/or metabolic disease progression.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available