4.0 Article

Numerical and exact solutions for time fractional Burgers' equation

Journal

JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS
Volume 10, Issue 7, Pages 3419-3428

Publisher

INT SCIENTIFIC RESEARCH PUBLICATIONS
DOI: 10.22436/jnsa.010.07.06

Keywords

Nonlinear time fractional Burgers' equation; an expansion method; finite difference method; Caputo formula; linear stability; Cole-Hopf transformation

Ask authors/readers for more resources

The main purpose of this paper is to find an exact solution of the traveling wave equation of a nonlinear time fractional Burgers' equation using the expansion method and the Cole-Hopf transformation. For this purpose, a nonlinear time fractional Burgers' equation with the initial conditions considered. The finite difference method (FDM for short) which is based on the Caputo formula is used and some fractional differentials are introduced. The Burgers' equation is linearized by using the Cole-Hopf transformation for a stability of the FDM. It shows that the FDM is stable for the usage of the Fourier-Von Neumann technique. Accuracy of the method is analyzed in terms of the errors in L-2 and L-infinity. All of obtained results are discussed with an example of the Burgers' equation including numerical solutions for different situations of the fractional order and the behavior of potentials u is investigated with graphically. All the obtained numerical results in this study are presented in tables. We used the Mathematica software package in performing this numerical study. (C) 2017 All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available