4.3 Article

Improving CLM4.5 Simulations of Land-Atmosphere Exchange during Freeze-Thaw Processes on the Tibetan Plateau

Journal

JOURNAL OF METEOROLOGICAL RESEARCH
Volume 31, Issue 5, Pages 916-930

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s13351-017-6063-0

Keywords

land surface model; freeze; thaw processes; gravel and organic matter; Tibetan Plateau

Funding

  1. National Natural Science Foundation of China [91537104, 41375077, 91537106, 91537214]

Ask authors/readers for more resources

Soil is heterogeneous and has different thermal and hydraulic properties, causing varied behavior in heat and moisture transport. Therefore, soil has an important effect on land-atmosphere interactions. In this study, an improved soil parameterization scheme that considers gravel and organic matter in the soil was introduced into CLM4.5 (Community Land Model). By using data from the Zoige and Madoi sites on the Tibetan Plateau, the ability of the model to simultaneously simulate the duration of freeze-thaw periods, soil temperature, soil moisture, and surface energy during freeze-thaw processes, was validated. The results indicated that: (1) the new parameterization performed better in simulating the duration of the frozen, thawing, unfrozen, and freezing periods; (2) with the new scheme, the soil thermal conductivity values were decreased; (3) the new parameterization improved soil temperature simulation and effectively decreased cold biases; (4) the new parameterization scheme effectively decreased the dry biases of soil liquid water content during the freezing, completely frozen, and thawing periods, but increased the wet biases during the completely thawed period; and (5) the net radiation, latent heat flux, and soil surface heat flux of the Zoige and Madoi sites were much improved by the new organic matter and thermal conductivity parameterization.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available