4.7 Article

CO production from CO2 via reverse water-gas shift reaction performed in a chemical looping mode: Kinetics on modified iron oxide

Journal

JOURNAL OF CO2 UTILIZATION
Volume 17, Issue -, Pages 60-68

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.jcou.2016.10.015

Keywords

Reverse water-gas shift; Chemical looping; CO2 reduction; CO production; Iron oxide

Funding

  1. Long Term Structural Methusalem of the Flemish Government
  2. Interuniversity Attraction Poles Programme [IAP7/5]
  3. Belgian State Belgian Science Policy
  4. Scientific Research Flanders (FWO-Vlaanderen) [G004613N]

Ask authors/readers for more resources

Carbon monoxide production from carbon dioxide via isothermal reverse water-gas shift chemical looping (RWGS-CL) is studied with a modified iron oxide oxygen carrier material (80 wt% Fe2O3-Ce0.5Zr0.5O2). The material is characterized by TEM, XRD and thermogravimetry at temperatures from 750 C to 850 C and gas mole fractions of H-2 and CO2 from 0.05 to 0.75, respectively. High temperature and high reactant concentrations favor the oxidation and reduction of the material during repeated redox cycles. The reaction rate of reduction is always faster than that of oxidation applying the same gas concentration of H-2 and CO2, respectively. The long term stability of the material is investigated with 500 redox cycles in a plug flow reactor. The material shows gradual deactivation lowering the CO yield during the first 100 redox cycles. After that, a steady state CO yield is reached for the next 400 redox cycles. Deactivation is attributed to surface sintering which results in slower reaction kinetics. TG data was used for a kinetic analysis applying the master plot method. The experimental data for oxidation and reduction indicated reaction mechanisms, which are well described by a reaction order and a geometrical contraction model. After parameter estimation, a good agreement between the model and the TG data was achieved with the reaction order and geometrical contraction model for oxidation and reduction, respectively. The RWGS-CL process can be used for sustainable CO production from CO2 if the energy for the process and for H-2 production is supplied by renewable sources. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available