4.2 Article

sEMG-based impedance control for lower-limb rehabilitation robot

Journal

INTELLIGENT SERVICE ROBOTICS
Volume 11, Issue 1, Pages 97-108

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s11370-017-0239-4

Keywords

Rehabilitation robot; Impedance control; Fuzzy adaptive; Voltage-based strategy; SEMG signals

Categories

Ask authors/readers for more resources

Recently, various rehabilitation robots have been developed for therapeutic exercises. Additionally, several control methods have been proposed to control the rehabilitation robots based on user's motion intention. One of the common control methods used is torque-based impedance control. This paper presents an electromyogram-based robust impedance control for a lower-limb rehabilitation robot using a voltage-based strategy. The proposed control strategy uses surface electromyogram (sEMG) signals in place of force sensors to estimate the exerted force. In addition, the control is based on the voltage control strategy, which differs from the common torque control strategies. For example, unlike the torque-based impedance control, the controller is not dependent on the dynamical models of the patient and the robot. This is particularly important as the dynamic of the patient is both difficult to model precisely and changes during the rehabilitation period. These simplifications results in a significant reduction in calculation time. To illustrate the effectiveness of the control approach, a 1-DOF lower-limb rehabilitation robot is designed. Experimental sEMG-force data are collected and used to train an artificial neural network. Simulation results show that compared with a torque-based control approach, the voltage-based is simpler, less computational and more efficient while it considers the presence of actuators. Finally, we design an adaptive fuzzy system to estimate and compensate the uncertainty in performing the impedance rule. The adaptive fuzzy system has an advantage that does not need new feedback to estimate the uncertainty. The control approach is further verified by stability analysis. Simulation results show the efficiency of the control approach in performing some therapeutic exercises.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available