4.2 Article

ECG Triggering in Ultra-High Field Cardiovascular MRI

Journal

TOMOGRAPHY
Volume 2, Issue 3, Pages 167-174

Publisher

GRAPHO PUBLICATIONS
DOI: 10.18383/j.tom.2016.00193

Keywords

ECG; ultra-high field; magnetohydrodynamic effect; cardiac; MRI

Funding

  1. University of Queensland

Ask authors/readers for more resources

Cardiac magnetic resonance imaging at ultra-high field (B-0 >= 7 T) potentially provides improved resolution and new opportunities for tissue characterization. Although an accurate synchronization of the acquisition to the cardiac cycle is essential, electrocardiogram (ECG) triggering at ultra-high field can be significantly impacted by the magnetohydrodynamic (MHD) effect. Blood flow within a static magnetic field induces a voltage, which superimposes the ECG and often affects the recognition of the R-wave. The MHD effect scales with B0 and is particularly pronounced at ultra-high field creating triggering-related image artifacts. Here, we investigated the performance of a conventional 3-lead ECG trigger device and a state-of-the-art trigger algorithm for cardiac ECG synchronization at 7 T. We show that by appropriate subject preparation and by including a learning phase for the R-wave detection outside of the magnetic field, reliable ECG triggering is feasible in healthy subjects at 7 T without additional equipment. Ultra-high field cardiac imaging was performed with the ECG signal and the trigger events recorded in 8 healthy subjects. Despite severe ECG signal distortions, synchronized imaging was successfully performed. Recorded ECG signals, vectorcardiograms, and large consistency in trigger event spacing indicate high accuracy for R-wave detection.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available