4.6 Article

Synergistic effects of engineered nanoparticles and organics released from laser printers using nano-enabled toners: potential health implications from exposures to the emitted organic aerosol

Journal

ENVIRONMENTAL SCIENCE-NANO
Volume 4, Issue 11, Pages 2144-2156

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7en00573c

Keywords

-

Funding

  1. National Institute for Occupational Safety and Health (NIOSH)
  2. Consumer Protection Safety Commission (CPSC) [212-2012-M-51174]
  3. National Institutes of Health (NIH) [HL007118, 1P30 CA-13148]
  4. National Science Foundation [1350789]
  5. Directorate For Engineering
  6. Div Of Chem, Bioeng, Env, & Transp Sys [1350789] Funding Source: National Science Foundation

Ask authors/readers for more resources

Recent studies have shown that engineered nanoparticles (ENPs) are incorporated into toner powder used in printing equipment and released during their use. Thus, understanding the functional and structural composition and the potential synergistic effects of this complex aerosol and released gaseous co-pollutants is critical in assessing their potential toxicological implications and risks. In this study, toner powder and PEPs were thoroughly examined for the functional and molecular composition of the organic fraction and the concentration profile of 16 Environmental Protection Agency (EPA)-priority polycyclic aromatic hydrocarbons (PAH) using state-of-the-art analytical methods. Results show significant differences in abundance of the non-exchangeable organic hydrogen of toner powder and PEPs, with a stronger aromatic spectral signature in PEPs. Changes in the structural composition of PEPs are indicative of radical additions and free-radical polymerization favored by catalytic reactions, resulting in formation of functionalized organic species. Particularly, accumulation of aromatic carbons with strong styrene-like molecular signatures on PEPs is associated with formation of semi-volatile heavier aromatic species (i.e., PAHs). Further, the transformation of low molecular weight PAHs in the toner powder to high molecular weight PAHs in PEPs was documented and quantified. This may be a result of synergistic effects from catalytic metal/metal oxide ENPs incorporated into the toner and the presence/release of semi-volatile organic species (SVOCs). The presence of known carcinogenic PAHs on PEPs raises public health concerns and warrants further toxicological assessment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available