4.5 Article

Use of Bayesian Inference for Parameter Recovery in DC and AC Voltammetry

Journal

CHEMELECTROCHEM
Volume 5, Issue 6, Pages 917-935

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/celc.201700678

Keywords

Voltammetry; Inverse Problems; Bayesian Inference; Parameter Estimation

Funding

  1. Australian Research Council [DP170101535]
  2. ARC Centre of Excellence for Electromatierlas Science [CE140100012]
  3. Rhodes Trust, UK
  4. EPSRC [EP/I017909/1]
  5. EPSRC Doctoral Training Grant [EP/G037280/1]
  6. Engineering and Physical Sciences Research Council [1651819] Funding Source: researchfish

Ask authors/readers for more resources

We describe the use of Bayesian inference for quantitative comparison of voltammetric methods for investigating electrode kinetics. We illustrate the utility of the approach by comparing the information content in both DC and AC voltammetry at a planar electrode for the case of a quasi-reversible one electron reaction mechanism. Using synthetic data (i.e. simulated data based on Butler-Volmer electrode kinetics for which the true parameter values are known and to which realistic levels of simulated experimental noise have been added), we are able to show that AC voltammetry is less affected by experimental noise (so that in effect it has a greater information content then the corresponding DC measurement) and hence yields more accurate estimates of the experimental parameters for a given level of noise. Significantly, the AC approach is shown to be able to distinguish higher values of the rate constant. The results of using synthetic data are then confirmed for an illustrative case of experimental data for the [Fe(CN)(6)](3-/4-) process.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available