4.6 Article

A Green Route to Copper Loaded Silica Nanoparticles Using Hyperbranched Poly(Ethylene Imine) as a Biomimetic Template: Application in Heterogeneous Catalysis

Journal

CATALYSTS
Volume 7, Issue 12, Pages -

Publisher

MDPI
DOI: 10.3390/catal7120390

Keywords

hyperbranched polyethyleneimine; biomimetic synthesis; silica; copper; heterogeneous catalysis

Funding

  1. European Union's 7th Framework Programme [280890-NEXT-GEN-CAT]

Ask authors/readers for more resources

Copper containing silica nanostructures are easily produced through a low cost versatile approach by means of hyperbranched polyethyleneimine (PEI), a water soluble dendritic polymer. This dendritic molecule enables the formation of hybrid organic/inorganic silica nanoparticles in buffered aqueous media, at room temperature and neutral pH, through a biomimetic silicification process. Furthermore, the derived hybrid organic/inorganic materials dispersed in water can be easily loaded with various copper amounts, due to the presence of PEI, which, despite having been integrated in the silica network, retains its strong copper chelating ability. Following calcination, the obtained copper loaded nanopowders are characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), N-2 adsorption, Temperature programmed reduction (TPR) and UV-Vis diffuse reflectance (UV-Vis-DR) techniques and evaluated for automotive exhaust purification under simulated conditions at the stoichiometric point. Effective control over final materials' pore structural and morphological characteristics is provided by employing different buffer solutions, i.e., tris(hydroxymethyl)aminomethane (Tris) or phosphate buffer. It was found that the enhancement of the nanopowders textural features, obtained in the presence of Tris buffer, had a great impact on the material's catalytic behavior, improving significantly its activity towards pollutants oxidation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available