4.1 Article Proceedings Paper

The Effect of PolSAR Image De-speckling on Wetland Classification: Introducing a New Adaptive Method

Journal

CANADIAN JOURNAL OF REMOTE SENSING
Volume 43, Issue 5, Pages 485-503

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/07038992.2017.1381549

Keywords

-

Categories

Funding

  1. Government of Canada through the federal Department of Environment and Climate Change
  2. Research & Development Corporation of Newfoundland and Labrador

Ask authors/readers for more resources

Speckle noise significantly degrades the radiometric quality of PolSAR image and, consequently, decreases the classification accuracy. This article proposes a new speckle reduction method for PolSAR imagery based on an adaptive Gaussian Markov Random Field model. We also introduce a new span image, called pseudo-span, obtained by the diagonal elements of the coherency matrix based on the least square analysis. The proposed de-specklingmethod was applied to full polarimetric C-band RADARSAT-2 data from the Avalon area, Newfoundland, Canada. The efficiency of the proposed method was evaluated in 2 different levels: de-speckled images and classified maps obtained by the Random Forest classifier. In terms of de-speckling, the proposed method illustrated approximately 19%, 43%, 46%, and 50% improvements in equivalent number of looks values, in comparison with SARBM3D, Enhanced Lee, Frost, and Kuan filter, respectively. Also, improvements of approximately 19%, 9%, 55%, and 32% were obtained in the overall classification accuracy using de-speckled PolSAR image by the proposed method compared with SARBM3D, Enhanced Lee, Frost, and Kuan filter, respectively. This new adaptive de-speckling method illustrates to be an efficient approach in terms of both speckle noise suppression and details/edges preservation, while having a great influence on the overall wetland classification accuracy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available