4.4 Article

In-situ reduced graphene oxide-polyvinyl alcohol composite coatings as protective layers on magnesium substrates

Journal

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.pnsc.2017.04.016

Keywords

Graphene oxide; in-situ reduction; Polyvinyl alcohol; Composite coatings; Corrosion resistance

Funding

  1. National Natural Science Foundation of China [51475447]

Ask authors/readers for more resources

A simple and feasible method was developed to fabricate in-situ reduced graphene oxide-polyvinyl alcohol composite (GO-PVA) coatings as protective layers on magnesium substrates. Polyvinyl alcohol was used as an in-situ reductant to transform GO into reduced GO. Contiguous and uniform GO-PVA coatings were prepared on magnesium substrates by dip-coating method, and were further thermally treated at 120 degrees C under ambient condition to obtain in-situ reduced GO-PVA coatings. Owing to the reducing effect of PVA, thermal treatment at low temperature led to effective in-situ reduction of GO as confirmed by XRD, Raman, FTIR and XPS tests. The corrosion current density of magnesium substrates in 3.5 wt% NaCl solution could be lowered to its 1/25 when using in-situ reduced GO-PVA coatings as protective layers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available