4.8 Article

Advanced anode for sodium-ion battery with promising long cycling stability achieved by tuning phosphorus-carbon nanostructures

Journal

NANO ENERGY
Volume 40, Issue -, Pages 550-558

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.nanoen.2017.08.019

Keywords

Phosphorus; Anode; Sodium-ion battery; Porous carbon; Carbon nanotube

Funding

  1. U.S. National Science Foundation (NSF) [DMR-1610430]
  2. National Natural Science Foundation of China [51602250]
  3. Thousand Youth Talents Plan Project of China
  4. Division Of Materials Research
  5. Direct For Mathematical & Physical Scien [1610430] Funding Source: National Science Foundation

Ask authors/readers for more resources

Phosphorus is considered as a promising anode for Na-ion battery because of its high theoretical capacity of 2595 mAh g(-1). In this study, two phosphorus-carbon (P-C) composites with well-controlled compositions and nanostructures of P and C have been developed: P@YP composite with P confined within porous structure of YP-80F carbon and P@CNT with unconfined P deposited on the surface of carbon nanotube. The structure and electrochemical performance of these two composites have been studied to illustrate the effect of nanostructures of both C and P. P@YP composite with appropriate amount of P confined in nanopores can accommodate its large volume change upon sodiation/desodiation and enable a stable solid-electrolyte interphase (SEI), ensuring an excellent long-term cycling stability with superior capacity retention of 92% after 100 cycles and 46% after 1000 cycles. In contrast, the P@CNT composite with unconfined P nanostructures shows a rapid capacity decay with capacity retention of similar to 40.6% after 100 cycles, most likely due to unstable SEI during cycling, caused by the large volume changes of unconfined P in the P@CNT composite. The well-designed nanostructured P-C composite with P confined within porous structure of carbon is demonstrated to greatly enhance the electrochemical performance, leading to promising long-term cycling stability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available