4.8 Article

The curious case of two dimensional Si2BN: A high-capacity battery anode material

Journal

NANO ENERGY
Volume 41, Issue -, Pages 251-260

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.nanoen.2017.09.026

Keywords

2D materials; Si2BN; Li-ion battery; Na-ion battery; DFT

Funding

  1. HPC2N (Abisko) [SNIC-2017-11-28, SNIC-2017-1-237]
  2. European Erasmus Fellowship Program (Erasmus Mundus NAMASTE)
  3. Swedish Research Council (VR)
  4. Carl Tryggers Stiftelse for Vetenskaplig Forskning (CTS)
  5. StandUP

Ask authors/readers for more resources

The ubiquity of silicon in the semiconductor industry and its unique charge transport features has consistently fueled interest in this element and recent realization 2D silicene is a new feather in its cap. In what could be considered as opening up the Pandora's box with many possible virtues, buckled silicene, planar graphene and a host of other newly discovered 2D materials have redefined a whole new paradigm of research. To this end, the quest for new 2D materials and finding potential applications, particularly to the realm of energy storage, is a curiosity driven task. From first principle density functional theory studies, a newly reported graphene like 2D material Si2BN is investigated as a probable anode material for Li and Na ion batteries. In contrast to pristine silicene, which is inherently buckled, the material Si2BN is planar. However, an interesting transition from planar to buckled structure takes place upon subsequent adsorption of Li and Na ions. Concomitantly, this transition is associated with superior specific capacity (1158.5 and 993.0 mA h/g respectively for Li and Na) which is significantly higher than several other 2D analogues. Furthermore, the substrate Si2BN regains the planar structure on subsequent desorption of ions and stability of the material remains intact, as evidenced from ab initio molecular dynamics simulations. As we delve deep into the electronic structure and compute the diffusion pathways and barriers, it is observed that the ionic diffusion is very fast with significantly lesser barrier heights, particularly for Na-ion. These findings suggest that for the 2D Si2BN, there is no diminution in order to be a potential anode material for Li and Na ion batteries.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available