4.6 Article

Fabrication of Graphene Aerogels with Heavily Loaded Metallic Nanoparticles

Journal

MICROMACHINES
Volume 8, Issue 2, Pages -

Publisher

MDPI
DOI: 10.3390/mi8020047

Keywords

graphene; aerogels; metal nanoparticles; hydrogen sensors

Funding

  1. Florida Space Institute
  2. NASA through NASA Space Technology Research Fellowships (NSTRF)

Ask authors/readers for more resources

Natural biomaterials with hierarchical structures that enable extraordinary capability of detecting chemicals have inspired the interest in producing materials that can mimic these natural structures. This study reports the fabrication of hierarchically-structured, reduced graphene oxide (rGO) aerogels with heavily loaded palladium (Pd), platinum (Pt), nickel (Ni), and tin (Sn) metallic nanoparticles. Metal salts chelated with ethylenediaminetetraacetic acid (EDTA) were mixed with graphene oxide (GO) and then freeze-dried. The subsequent reduction produces rGO/metal nanoparticle aerogels. SEM and EDS results indicated that a loading of 59, 67, 39, and 46 wt % of Pd, Pt, Ni, and Sn nanoparticles was achieved. Pd/rGO aerogels of different Pd nanoparticle concentrations were exposed to H-2 gas to monitor the resistance change of the composites. The results suggest that rGO aerogels can achieve a higher nanoparticle loading by using chelation to minimize electrostatic interactions between metal ions and GO. Higher loading of Pd nanoparticles in graphene aerogels lead to improved hydrogen gas sensing performance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available