4.1 Review

Mineral Mapping for Exploration: An Australian Journey of Evolving Spectral Sensing Technologies and Industry Collaboration

Journal

GEOSCIENCES
Volume 6, Issue 4, Pages -

Publisher

MDPI
DOI: 10.3390/geosciences6040052

Keywords

mineral mapping; exploration; alteration mineralogy; mineral system; multi-spectral; hyperspectral; remote sensing; geology; satellite; airborne; drill-core

Funding

  1. CSIRO
  2. NASA/JPL
  3. Geoscience Australia
  4. Geological Survey of Western Australia
  5. Geological Survey of South Australia
  6. Queensland Geological Survey
  7. USGS
  8. CRC-LEME
  9. AMIRA
  10. ERSDAC/JSS
  11. Geological Survey of Japan
  12. ASTER Science Team
  13. Hyperion Science Team
  14. Aerospace Corporation
  15. HyVista/ISPL
  16. ITRES (Canada)
  17. SpecTIR
  18. World Geoscience
  19. International Training Centre (ITC Netherlands)
  20. University of Alberta-Benoit Rivard
  21. University of Campinas
  22. Sumitomo Metal Mining
  23. JOGMEC (Japan)
  24. Anglo American (South Africa)
  25. Anglogold

Ask authors/readers for more resources

This paper describes selected results from over a dozen collaborative projects led by Commonwealth Scientific and Industrial Research Organisation (CSIRO) in Australia spanning a 30-year history of developments in satellite, airborne, field and drill core sensing technologies and how these can assist explorers to measure and map valuable mineral information. The exploration case histories are largely from Australian test sites and describe how spectral sensing technologies have progressed from early niche creation systems, such as the field PIMA-II (Portable Field Mineral Analyzer) and airborne Geoscan, HyMap (TM) and OARS-TIPS (Operational Airborne Remote Sensing - Thermal Infrared Profiling Spectrometer) systems and drill-core HyLogger (TM) systems, to the current expanding array of pubic and commercial mineral mapping sensors, including the ASTER (Advanced Spaceborne Thermal Emission and Reflectance Radiometer) satellite system which has acquired imagery spanning the entire Earth's land surface (<83 degrees latitude). These sensors are delivering voluminous spectral data from different parts of the visible to the thermal infrared (400 to 14,000 nm) spectrum at different spectral, radiometric and spatial resolutions. Two critical exploration challenges are central to the case histories, namely: (i) can surface cover, such as vegetation, regolith or transported materials, be characterized and accounted for so that the target geology is accurately revealed; and (ii) does this revealed geology show evidence of alteration footprints to potential economic mineralization. Spectrally measurable minerals important to solving these challenges include white micas, kaolinite and garnets, with measurement of their respective physicochemistries being key. For example, kaolin disorder is useful for mapping transported versus weathered in situ materials, while the chemical substitution in white micas and garnets provide vectors to potential economic mineralization. Importantly, appropriate selection of the optimum sensor/data type for a given geological application depends primarily on the level of detail/accuracy of the mineral information required by the user. A major opportunity is to now harness the many sensor/data types and deliver to users consistent, accurate mineral information products, that is, creation of a number of valuable global mineral product standards. As part of this vision, CSIRO has been developing improved sensor/data calibration processes and information extraction methods that for example, unmix the target mineralogy from green and dry vegetation cover in remote sensing data sets. Emphasis to date has been on generating public spectral-mineral product standards, especially at ASTER's limited but geologically-valuable spectral resolution. The results are showing that scalable, global, three-dimensional (3D) mineral maps are achievable which will only improve our ability to more accurately characterize regolith and geological architecture, increase our understanding of formative processes and assist the discovery of new economic mineral systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available