4.3 Review

Review of multi-scale and multi-physical simulation technologies for shale and tight gas reservoirs

Journal

JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING
Volume 37, Issue -, Pages 560-578

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.jngse.2016.11.051

Keywords

Shale and tight gas reservoir; Reservoir simulation; Pore-scale simulation; Adsorption and desorption; Klinkenberg effect and slip flow; Transitional flow; Knudsen diffusion; Non-linear and non-darcy flow; Geomechanics; THMC

Ask authors/readers for more resources

This paper provides a comprehensive literature review on the simulation techniques being developed in recent years for describing unique flow behaviors in shale and tight gas reservoirs. The advances in modeling gas flow and transport mechanisms during the primary and enhanced gas recovery processes are reviewed in detail. The capabilities of reservoir simulation tools are discussed in terms of mathematical treatment (finite difference, finite element, explicit/implicit scheme, sequentially and fully coupled schemes), fluid flow characteristics (Darcy and non-Darcy flow, desorption, Klinkenberg effect and gas slip flow, transitional flow, Knudsen diffusion), reservoir rock properties (pore size distribution, fractures, geomechanics), multidisciplinary coupling scheme (THM, THC, THMC), modeling scale, and computational efficiency. For pore-scale modeling of gas flow and transport in unconventional reservoir rocks, the numerical methods for generating pore network models and the procedure for constructing real 3D digital rocks are first explained. Then, the network modeling methods used for simulating slip and transitional flows in pore networks are introduced and compared. After that, existing lattice Boltzmann models developed for slip flow simulation are illustrated. Along with the explanation, pros and cons of the models for pore-scale modeling have been identified. Overall, dwelling on the concerns and challenges in shale and tight gas reservoir simulation, current status, progress and bottlenecks of numerical simulation technologies are discussed and perspectives on future development of unconventional gas reservoir simulators are proposed. (C) 2016 Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available