4.6 Article

Adsorption-controlled growth and the influence of stoichiometry on electronic transport in hybrid molecular beam epitaxy-grown BaSnO3 films

Journal

JOURNAL OF MATERIALS CHEMISTRY C
Volume 5, Issue 23, Pages 5730-5736

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7tc00190h

Keywords

-

Funding

  1. National Science Foundation [DMR-1410888]
  2. UMN MRSEC program [DMR-1420013]
  3. Young Investigator Program of the Air Force Office of Scientific Research (AFOSR) [FA9550-16-1-0205]
  4. NSF through the MRSEC program
  5. UMN Doctoral Dissertation Fellowship
  6. Division Of Materials Research
  7. Direct For Mathematical & Physical Scien [1410888] Funding Source: National Science Foundation

Ask authors/readers for more resources

High room-temperature electron mobility and optical transparency in the visible spectrum distinguishes BaSnO3 from other perovskite oxides. The origin of low mobility in thin films as compared to their bulk counterpart is attributed to the presence of dislocations in films with nearly no discussion on the role of point defects such as cation non-stoichiometry. Using high-resolution X-ray diffraction, Rutherford backscattering spectrometry, thermal, and electronic transport measurements, we show that a growth window, in which cation stoichiometry is self-regulating, can be achieved for BaSnO3 films on SrTiO3(001) and (La0.3Sr0.7)(Al0.65Ta0.35)O-3(001) (LSAT) substrates using a hybrid molecular beam epitaxy approach. BaSnO3 films on SrTiO3 grown within the growth window yielded a mobility value of 105 cm(2) V-1 s(-1) at a density, 2.5 x 10(20) cm(-3). Bulk-like thermal conductivity of 13.3 +/- 1.46 W m(-1) K-1 was achieved for stoichiometric films. Both Ba- and Sn-deficient films resulted into charge compensation and low mobility, with a stronger dependence for Sn-deficient films.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available