4.6 Article

Facile zinc oxide nanowire growth on graphene via a hydrothermal floating method: towards Debye length radius nanowires for ultraviolet photodetection

Journal

JOURNAL OF MATERIALS CHEMISTRY C
Volume 5, Issue 38, Pages 10087-10093

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7tc03325g

Keywords

-

Funding

  1. Plant Directed Research and Development funds from the Department of Energy's National Security Campus [DE-NA0002839]
  2. ARO [ARO-W911NF-16-1-0029]
  3. NSF [NSF-DMR-1337737, NSF-DMR-1508494]
  4. Division Of Materials Research
  5. Direct For Mathematical & Physical Scien [1337737] Funding Source: National Science Foundation
  6. Division Of Materials Research
  7. Direct For Mathematical & Physical Scien [1508494] Funding Source: National Science Foundation

Ask authors/readers for more resources

Vertically aligned zinc oxide nanowires on graphene (ZnO-NW/graphene) heterojunction nanohybrids combine the superior sensitivity of crystalline ZnO-NWs with high charge mobility of graphene to provide an ideal platform for high-performance detectors and sensors. Controlling the ZnO-NW microstructure and ZnO-NW/graphene interface is of primary importance for the device performance. This work explores floating hydrothermal growth of ZnO-NWs on seedless and ZnO seeded graphene, and investigates the effects of the microstructure and interface on the performance of ZnO-NW/graphene ultraviolet (UV) detectors. It has been found that the ZnO seed layer facilitates the growth of a dense ZnO-NW array with a NW radius approaching the Debye length. In contrast, the seedless process results in a lower NW areal density and a larger NW diameter on the order of sub-to-few micrometers. Consequently, higher UV responsivity up to 728 A W-1 was obtained in the former. However, a strong charge trapping effect was also observed, which is attributed to the poorer crystallinity of the ZnO-NWs originating from the ZnO seed layer. These results shed light on the importance of controlling the microstructure and interface towards high-performance ZnO-NW/graphene nanohybrid optoelectronics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available