4.7 Article

Analytical investigation on mechanical buckling of FGM truncated conical shells reinforced by orthogonal stiffeners based on FSDT

Journal

COMPOSITE STRUCTURES
Volume 159, Issue -, Pages 827-841

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.compstruct.2016.10.006

Keywords

Functionally graded material (FGM); Stiffened truncated conical shell; Buckling; Critical buckling load; First order shear deformation theory

Funding

  1. Vietnam National Foundation for Science and Technology Development (NAFOSTED) [107.02-2015.11]

Ask authors/readers for more resources

This work presents an analytical investigation for analyzing the mechanical buckling of truncated conical shells made of functionally graded materials, subjected to axial compressive load and external uniform pressure. Shells are reinforced by closely spaced stringers and rings. The change of spacing between stringers in the meridional direction also is taken into account. Using the adjacent equilibrium criterion, the first order shear deformation theory (FSDT) and Lekhnitskii smeared stiffener technique, the linearization stability equations have been established. The resulting equations which they are the system of five variable coefficient partial differential equations in terms of displacement components are investigated by Galerkin method. The closed-form expression for determining the critical buckling load is obtained. The effects of material properties, dimensional parameters, stiffeners and semi-vertex angle on buckling behaviors of shell are considered. Shown that for thick conical shells, the use of FSDT for determining their critical buckling load is necessary and more suitable. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available