4.6 Article

Structural properties of the thermoelectric material CuCrS2 and of deintercalated CuxCrS2 on different length scales: X-ray diffraction, pair distribution function and transmission electron microscopy studies

Journal

JOURNAL OF MATERIALS CHEMISTRY C
Volume 5, Issue 36, Pages 9331-9338

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7tc02983g

Keywords

-

Funding

  1. German Research Foundation (DFG) [KI 1263/16-1, BE1653/36-1]

Ask authors/readers for more resources

We report on the structural alterations of the thermoelectric material CuCrS2 introduced by the removal of 1/3 of the Cu+ ions which are located between CrS2 layers. X-ray diffraction (XRD) and pair distribution function (PDF) analyses revealed a newly formed Cu0.66CrS2 phase with monoclinic symmetry and a 3a superstructure. Simultaneously, a distortion of CrS6 octahedra is observed strongly indicating the oxidation of Cr3+ -> Cr4+ leading to a Jahn-Teller distortion. The structural features extracted from XRD indicate a pronounced disorder in the cationic sub-lattice at moderate temperatures (400 K). Transmission electron microscopy (TEM) examination elucidates the formation of a second Cu0.66CrS2 phase without the superstructure, caused by incipient Cu+ mobility upon beam irradiation. The synergetic combination of high temperature XRD and TEM investigations unveiled the complete mechanism of the phase transition occurring at 503 K, where a transformation into the spinel CuCr2S4 and stoichiometric CuCrS2 occurs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available