4.6 Article

Superior selectivity and sensitivity of blue phosphorus nanotubes in gas sensing applications

Journal

JOURNAL OF MATERIALS CHEMISTRY C
Volume 5, Issue 22, Pages 5365-5371

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6tc05094h

Keywords

-

Funding

  1. King Abdullah University of Science and Technology (KAUST)

Ask authors/readers for more resources

On the basis of first principles calculations, we study the adsorption of CO, CO2, NH3, NO, and NO2 molecules on armchair and zigzag blue phosphorus nanotubes. The nanotubes are found to surpass the gas sensing performance of other one-dimensional materials, in particular Si nanowires and carbon nanotubes, and two-dimensional materials, in particular graphene, phosphorene, and MoS2. Investigation of the energetics of the gas adsorption and induced charge transfers indicates that blue phosphorus nanotubes are highly sensitive to N-based molecules, in particular NO2, due to covalent bonding. The current-voltage characteristics of nanotubes connected to Au electrodes are derived by the non-equilibrium Green's function formalism and used to quantitatively evaluate the change in resistivity upon gas adsorption. The observed selectivity and sensitivity properties make blue phosphorus nanotubes superior gas sensors for a wide range of applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available