4.6 Article

Prediction of tunable quantum spin Hall effect in methyl-functionalized tin film

Journal

JOURNAL OF MATERIALS CHEMISTRY C
Volume 5, Issue 10, Pages 2656-2661

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7tc00153c

Keywords

-

Funding

  1. National Natural Science Foundation of China [11434006, 11304121]

Ask authors/readers for more resources

The quantum spin Hall (QSH) effect may promote revolutionary device development due to dissipationless propagation of spin currents. The bottleneck preventing applications from the QSH effect, however, is a lack of large nontrivial bulk gap and highly stable two-dimensional (2D) films. In this work, we design a novel 2D honeycomb lattice, namely a SnCH3 monolayer, using comprehensive density-functional theory (DFT) computations. The structural stability is confirmed using a phonon spectrum and molecular dynamics simulations. Interestingly, its nontrivial bulk gap can reach up to 0.34 eV, which is further tunable via external strain. The nontrivial topology stems mainly from band inversion between the s-p(x, y) orbitals, demonstrated by the nonzero topological invariant Z(2) and a single pair of gapless helical edge states located in the bulk gap. The effects of a growth substrate on the QSH effect are also checked by hydrogen bonding on a single side in stanene, showing the robustness of the observed QSH phase. Considering its compatibility with the current electronics industry, these findings present an efficient platform to enrich topological phenomena and expand potential applications of 2D stanene at high temperature.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available