4.7 Article

Direct regressions for underwater acoustic source localization in fluctuating oceans

Journal

APPLIED ACOUSTICS
Volume 116, Issue -, Pages 303-310

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.apacoust.2016.10.005

Keywords

Underwater source localization; Fluctuating ocean; Machine learning; Regression

Categories

Funding

  1. DGA/MRIS

Ask authors/readers for more resources

In this paper, we show the potential of machine learning regarding the task of underwater source localization through a fluctuating ocean. Underwater source localization is classically addressed under the angle of inversion techniques. However, because an inversion scheme is necessarily based on the knowledge of the environmental parameters, it may be not well adapted to a random and fluctuating underwater channel. Conversely, machine learning only requires using a training database, the environmental characteristics underlying the regression models. This makes machine learning adapted to fluctuating channels. In this paper, we propose to use non linear regressions for source localization in fluctuating oceans. The kernel regression as well as the local linear regression are compared to typical inversion techniques, namely Matched Field Beamforming and the algorithm MUSIC. Our experiments use both real tank-based and simulated data, introduced in the works of Real et al. Based on Monte Carlo iterations, we show that the machine learning approaches may outperform the inversion techniques. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available