4.6 Article Proceedings Paper

Axial and radial void fraction measurements in convective boiling flows

Journal

CHEMICAL ENGINEERING SCIENCE
Volume 157, Issue -, Pages 127-137

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ces.2016.04.038

Keywords

Convective boiling flows; Densitometry; Sub-cooled boiling; Saturated boiling; Modified Fourier Hankel method

Ask authors/readers for more resources

This work is inspired by the need to have measurements and predictive capability on vertical saturated boiling flows, which are of importance in boiling water nuclear reactors. In these systems, sub-cooled water flows upwards in vertical tubes which contain a multiplicity of nuclear fuel rods, and the heat is taken away from these rods by natural convection boiling. A close analog of this situation exists when the liquid is in forced flow, and the heat flux from the vertical rods is quenched by forced convection boiling of the upward liquid water flux. In this work, we present experimental data has for axial, and radial vapor void fraction distributions in an annular boiling channel for low mass-flux forced the flow of water at high inlet sub-cooling. A single centrally placed electrical rod, designed to mimic the nuclear fuel rod has been used. The void fraction measurement is made using gamma ray densitometry technique. Axial and radial vapor void fractions have been reported, as a function of inlet liquid flux and inlet liquid temperature. The experimental data has been rationalized using a simple one-dimensional drift flux model adapted to the conditions of the experiment. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available