4.6 Article

Efficient PbS quantum dot solar cells employing a conventional structure

Journal

JOURNAL OF MATERIALS CHEMISTRY A
Volume 5, Issue 45, Pages 23960-23966

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7ta07014d

Keywords

-

Funding

  1. National Key Research and Development (R&D) Program of China [2016YFA0202402]
  2. National Natural Science Foundation of China [61674111]
  3. Natural Science Foundation of Jiangsu Province of China [BK20170337]
  4. 111 projects
  5. Collaborative Innovation Center of Suzhou Nano Science and Technology (Nano-CIC), Soochow University
  6. Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)

Ask authors/readers for more resources

New-generation solar cells based on colloidal lead chalcogenide (PbX) quantum dots (CQDs) are promising low-cost solution-processed photovoltaics. However, current state-of-the art CQDs are all using an inverted device architecture. The performance gap between CQD solar cells with conventional and inverted structures is much larger than that for other solution-processed photovoltaics such as organic and perovskite solar cells, which may restrict the future development of CQD solar cells. Here, we reported a record-high power conversion efficiency of 8.45% for conventionally structured PbS QD solar cells by the introduction of a unique conjugated polymer PDTPBT as the anode buffer layer. With the modification of the anode, the device performance was largely improved through a dramatic enhancement in open circuit voltage (Voc), which can be attributed to the enhanced hole extraction to the anode after PDTPBT modification. Meanwhile, the polymer layer can also efficiently improve charge separation and reduce interfacial charge recombination as well as reverse saturation current density, which result in significantly enhanced Voc. More importantly, our results proposed a new conventional architecture for QD solar cells which can avoid the complex processing of metal oxides and is free of light-soaking. This new device structure may offer more flexibility in future device design and show potential advantages in large-scale manufacturing by simplifying the fabrication process.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available