4.6 Article

Biomass based nitrogen-doped structure-tunable versatile porous carbon materials

Journal

JOURNAL OF MATERIALS CHEMISTRY A
Volume 5, Issue 25, Pages 12958-12968

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7ta02113e

Keywords

-

Funding

  1. National Natural Science Foundation of China [21472235, 21464015]
  2. Xinjiang Distinguished Youth Scholar Program [qn2015jq012]
  3. One Thousand Talents Xinjiang Program of China [Y32H291501]

Ask authors/readers for more resources

Hierarchical nitrogen-doped porous carbons (HNPCs) with tunable pore structures and ultrahigh specific surface areas were designed and prepared from sustainable biomass precursor cellulose carbamate via simultaneous carbonization and activation by a facile one-pot approach. The as-synthesized HNPCs exhibited an ultrahigh specific surface area (3700 m(2) g(-1)), a high pore volume (3.60 cm(3) g(-1)) and a high level of nitrogen-doping (7.7%). The HNPCs were structurally tunable in terms of their pore structure and morphology by adjusting the calcination temperature. In three-electrode systems, the electrode made of HNPCs prepared at 900 degrees C (HNPCs-900) showed a high specific capacitance of 339 F g(-1) in 6 M KOH aqueous electrolyte and 282 F g(-1) in 1 M H2SO4 electrolyte at a current density of 0.5 A g(-1). An outstanding rate capability (similar to 73% retention at a current density of 20 A g(-1)) and excellent cycling stability (similar to 95% retention after 5000 galvanostatic charge-discharge cycles at a current density of 5 A g(-1)) in KOH electrolyte were achieved. In two-electrode systems, the electrode made of HNPCs-900 exhibited a high specific capacitance of 289 F g(-1) at 0.5 A g(-1) and good rate capacity (similar to 72% retention at a current density of 20 A g(-1)) as well as cycling stability (similar to 92% retention at 2 A g(-1)) after 5000 cycles. Furthermore, the HNPCs-900 showed an unprecedented adsorption capacity for methylene blue (1551 mg g(-1)) which was among the few highest ever reported for dye removal. The HNPCs could be used as functional materials for energy storage and waste water treatment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available