4.6 Review

Multiscale-architectured functional membranes utilizing inverse opal structures

Journal

JOURNAL OF MATERIALS CHEMISTRY A
Volume 5, Issue 33, Pages 17111-17134

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7ta05033j

Keywords

-

Funding

  1. NRF - National Research Foundation under the Ministry of Science, ICT Future, Korea [2017R1A2B2008132]
  2. National Research Foundation of Korea [2017R1A2B2008132] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

Membranes have been used throughout history to purify water. Advances made in membrane technologies over the past century have typically focused on either enhancing the separation efficiency of a membrane or improving the permeation flux. Enhancing the separation efficiency, however, inevitably leads to a reduction in the permeation flux, while improving the permeation flux results in lower separation efficiencies. Recently, isoporous membranes have garnered great attention because of their unique characteristics in terms of their pore uniformity, resulting in highly selective separation capabilities for desired species. There have been attempts to employ highly porous three-dimensional inverse opal (3D-IO) structures as a means to develop high-performance isoporous membranes. 3D-IO membranes are basically prepared by assembling closely packed colloidal particles, filling the gaps with a suitable material, and then dissolving out the colloids to form an inverse opal structure. In particular, 3D-IO structures can be implemented to impart advanced membrane properties through secondary processes of multiscale-architecturing, such as elaborate control over the interconnected pore size, embedding specific functional moieties, and incorporating structural hierarchy; this eventually creates high-performance membrane properties that attain both high separation efficiencies and high permeabilities. In this review, we begin with recent developments in nanostructuring that have been used to generate 3D opal and IO structures, including their design and fabrication methods, with a particular emphasis on the preparation of large-scale 3D-IO structures for membrane applications. We then discuss the different methods that can be used to harness 3D-IOs, combined with multiscale architecturing, to obtain improved performances in separation membranes and catalytic membranes. We anticipate that approaches that utilize 3D-IOs will have great potential to provide a novel platform for next-generation, high-performance membranes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available