4.6 Article

A start of the renaissance for nickel metal hydride batteries: a hydrogen storage alloy series with an ultra-long cycle life

Journal

JOURNAL OF MATERIALS CHEMISTRY A
Volume 5, Issue 3, Pages 1145-1152

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6ta09736g

Keywords

-

Funding

  1. National Natural Science Foundation of China [51631004, 51671092]
  2. ChangBai Mountain Scholars Program
  3. Natural Science Foundation of Jilin Province [20160101315JC]

Ask authors/readers for more resources

Nickel metal hydride (Ni-MH) batteries have demonstrated key technology advantages for applications in new-energy vehicles, while the main challenge derives from the insufficient cycle lives ( about 500 cycles) of their negative electrode materials-hydrogen storage alloys. As a result, progress in their development has been very limited over the past decades. Here we propose a theoretical framework to design a series of long-life and low-cost hydrogen storage alloys, by considering the electronegativities of the elements to enhance the alloys' corrosion resistance. Two novel candidate alloys, La0.6Ce0.3Y0.1Ni3.7Co0.75Mn0.3Al0.35 and La0.55Ce0.3Y0.15Ni3.7Co0.75Mn0.3Al0.35, show ultra-long cycle lives of 1325 and 1407 cycles, respectively, which are almost triple that of the commercial alloy (MmNi(3.55)Co(0.75)Mn(0.4)Al(0.3)) that is used in Ni-MH batteries. The usage costs of Ni-MH batteries based on these two alloys are only 1/4 of that of the lithium-ion battery, showing better market prospects for large-scale applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available