4.6 Review

Evolving molecular architectures of donor-acceptor conjugated polymers for photovoltaic applications: from one-dimensional to branched to two-dimensional structures

Journal

JOURNAL OF MATERIALS CHEMISTRY A
Volume 5, Issue 46, Pages 24051-24075

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7ta07228g

Keywords

-

Funding

  1. Ministry of Science and Technology, Taiwan [MOST 103-2221-E-009-212-MY3]

Ask authors/readers for more resources

Over the last ten years, the molecular architectures of p-type donor-acceptor (D-A) conjugated polymers designed for bulk heterojunction (BHJ) photovoltaics, when mixed with fullerenes or n-type polymers, have progressed substantially from one-dimensional (1-D) to branched to two-dimensional (2-D) D-A conjugated structures. In the 1-D structures, alternating D and A units allow internal charge transfer along the conjugated backbone and increase the effective resonance length, as a result of facilitated pi-electron delocalization. Upon progressing from 1-D structures to branched D-A conjugated polymers (comprising repeating donor units in the main chain with electron-withdrawing side chain units) to 2-D conjugated polymers (having D-A repeating units on their backbones as well as perpendicular electron-donating groups on their D units), the solubility, effective conjugation length, and photophysical and BHJ photovoltaic properties have all been altered dramatically. The ideal p-type 2-D conjugated D-A polymer for use in BHJ photovoltaic devices should possess a low band gap (to broaden the absorption range), excellent packing characteristics (particularly along the out-of-plane direction, ensuring good carrier transport), and suitable energy levels for efficient electron transfer (to fullerene moieties or n-type polymers). In this review, we discuss the effects of the structural characteristics and optical properties of these conjugated polymers as well as their packing characteristics on the device performances.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available