4.6 Article

Substituent effects in magnesium tetraethynylporphyrin with two diketopyrrolopyrrole units for bulk heterojunction organic solar cells

Journal

JOURNAL OF MATERIALS CHEMISTRY A
Volume 5, Issue 44, Pages 23067-23077

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7ta07576f

Keywords

-

Funding

  1. University of Science and Technology of China
  2. JSPS KAKENHI [JP15H05760, JP16H04187, JP17K04970, JP17K19116]
  3. MEXT, Japan
  4. Strategic Promotion of Innovative Research and Development, Japan Science and Technology Agency (JST), Japan
  5. Grants-in-Aid for Scientific Research [16H04187] Funding Source: KAKEN

Ask authors/readers for more resources

Magnesium tetraethynylporphyrin complexes with two aryl groups (Ar = Ph, C6H4-n-hexyl-4, C6H4-CF3-4, and C6H4-NMe2-4) and two thienyl-substituted diketopyrrolopyrrole units were synthesized by Sonogashira coupling reactions. Electrochemical measurements and photoelectron yield spectroscopy showed that the energy levels of the compounds could be effectively tuned by electron-withdrawing and -donating substituents on the aryl groups. Theoretical calculation revealed that the electronic effects of the Ar group substituents strongly affected the energy level of the highest occupied molecular orbital (HOMO) because the localized HOMO on the porphyrin core was conjugated with the Ar groups through ethynyl linkers. Bulk heterojunction small-molecule organic solar cells with these magnesium porphyrin electron donors were fabricated to evaluate the morphological and electronic effects of the Ar group substituents. The n-hexyl groups promoted the formation of phase-separated structures with a high fill factor, yielding a respectable power conversion efficiency of 5.73%. The use of the electronwithdrawing CF3 group gave a high open-circuit voltage of 0.79 V because of the lowered HOMO level, while the use of the electron-donating NMe2 group produced a low band gap that extended the incident photon-to-current conversion efficiency spectrum to 1100 nm.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available