4.4 Article

Augury of darkness: the low-mass dark Z′ portal

Journal

JOURNAL OF HIGH ENERGY PHYSICS
Volume -, Issue 4, Pages -

Publisher

SPRINGER
DOI: 10.1007/JHEP04(2017)164

Keywords

Cosmology of Theories beyond the SM; Beyond Standard Model

Funding

  1. CNPq [307098/ 2014-1]
  2. FAPESP [2013/22079-8]
  3. U.S. Department of Energy [DE-SC0010107]
  4. ERC
  5. Research Executive Agency (REA) of the European Union [PITN-GA2012-316704]
  6. European Union [674896]

Ask authors/readers for more resources

Dirac fermion dark matter models with heavy Z ' mediators are subject to stringent constraints from spin-independent direct searches and from LHC bounds, cornering them to live near the Z ' resonance. Such constraints can be relaxed, however, by turning off the vector coupling to Standard Model fermions, thus weakening direct detection bounds, or by resorting to light Z ' masses, below the Z pole, to escape heavy resonance searches at the LHC. In this work we investigate both cases, as well as the applicability of our findings to Majorana dark matter. We derive collider bounds for light Z ' gauge bosons using the CLS method, spin-dependent scattering limits, as well as the spin-independent scattering rate arising from the evolution of couplings between the energy scale of the mediator mass and the nuclear energy scale, and indirect detection limits. We show that such scenarios are still rather constrained by data, and that near resonance they could accommodate the gamma-ray GeV excess in the Galactic center.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available