4.4 Article

MeV-scale sterile neutrino decays at the Fermilab Short-Baseline Neutrino program

Journal

JOURNAL OF HIGH ENERGY PHYSICS
Volume -, Issue 4, Pages -

Publisher

SPRINGER
DOI: 10.1007/JHEP04(2017)102

Keywords

Beyond Standard Model; Neutrino Physics

Funding

  1. uropean Research Council under ERC Grant NuMass [FP7-IDEAS-ERC ENC-CG 617143]
  2. European Union FP7 ITN-INVISIBLES (Marie Curie Actions) [PITN-GA-2011-289442]
  3. ELUSIVES ITN (H-MSCA-ITN) [GA-2015-674896-ELUSIVES]
  4. In-visiblePlus (H-MSCA-RISE) [GA-2015-690575-InvisiblesPlus]
  5. Wolfson Foundation
  6. Royal Society

Ask authors/readers for more resources

Nearly-sterile neutrinos with masses in the MeV range and below would be produced in the beam of the Short-Baseline Neutrino (SBN) program at Fermilab. In this article, we study the potential for SBN to discover these particles through their subsequent decays in its detectors. We discuss the decays which will be visible at SBN in a minimal and non-minimal extension of the Standard Model, and perform simulations to compute the parameter space constraints which could be placed in the absence of a signal. We demonstrate that the SBN programme can extend existing bounds on well constrained channels such as N -> vl(+)l(-) and N -> l(+/-)pi(-/+) while, thanks to the strong particle identification capabilities of liquid-Argon technology, also place bounds on often neglected channels such as N -> nu gamma and N -> nu pi(0). Furthermore, we consider the phenomenological impact of improved event timing information at the three detectors. As well as considering its role in background reduction, we note that if the light-detection systems in SBND and ICARUS can achieve nanosecond timing resolution, the effect of finite sterile neutrino mass could be directly observable, providing a smoking-gun signature for this class of models. We stress throughout that the search for heavy nearly-sterile neutrinos is a complementary new physics analysis to the search for eV-scale oscillations, and would extend the BSM programme of SBN while requiring no beam or detector modifications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available