3.8 Proceedings Paper

A two-dimensional investigation about magnetocaloric regenerator design: parallel plates or packed bed?

Journal

34TH UIT HEAT TRANSFER CONFERENCE 2016
Volume 796, Issue -, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/1742-6596/796/1/012018

Keywords

-

Ask authors/readers for more resources

Magnetic Refrigeration (MR) is a novel refrigeration technique based on eco-friendly solid materials as refrigerants, whom react to the application of magnetic fields, with warming and cooling by magnetocaloric effect. The thermodynamical cycle which best suits the magnetic refrigeration is Active Magnetic Regenerator cycle (AMR). Regenerator is the core of a magnetic refrigerator, since that it plays a dual-role: it operates both as refrigerant and regenerator in an AMR cycle. An AMR cycle consists of two adiabatic stages and two isofield stage. In this paper an investigation is conducted about the magnetocaloric refrigerator design through two-dimensional multiphysics numerical models of two different magnetocaloric regenerators: (1) a packed bed and (2) a parallel plates magnetic regenerators made of gadolinium, operating at room temperature under a 1.5T magnetic field induction. Both models employ water as secondary fluid. The tests were performed with variable fluid flow rate at fixed AMR cycle frequency. The results obtained are presented in terms of temperature span, cooling power, coefficient of performance and mechanical power of the circulation pump, and they indicate under which operating conditions packed bed configuration is to be preferred to parallel plates and vice versa.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available