4.2 Article

The HDAC Inhibitor LAQ824 Enhances Epigenetic Reprogramming and In Vitro Development of Porcine SCNT Embryos

Journal

CELLULAR PHYSIOLOGY AND BIOCHEMISTRY
Volume 41, Issue 3, Pages 1255-1266

Publisher

KARGER
DOI: 10.1159/000464389

Keywords

Pig, Histone deacetylase inhibitor; Somatic cell nuclear transfer; Reprogramming; In vitro development

Funding

  1. Korea Institute of Planning and Evaluation for Technology in food, agriculture, forestry and fisheries [311011-05-4-SB010, 114059-03-2-5B010]
  2. Ministry of Trade, Industry Energy [10048948]
  3. National Research Foundation [2016M3A9B6903410]
  4. China Scholarship Council (CSC) [2015-3022]
  5. Research Institute for Veterinary Science
  6. TS Corporation
  7. BK21 plus program

Ask authors/readers for more resources

Background/Aims: Hypoacetylation caused by aberrant epigenetic nuclear reprogramming results in low efficiency of mammalian somatic cell nuclear transfer (SCNT). Many epigenetic remodeling drugs have been used in attempts to improve in vitro development of porcine SCNT embryos. In this study, we examined the effects of LAQ824, a structurally novel histone acetylase inhibitor, on the nuclear reprogramming and in vitro development of porcine SCNT embryos. Methods: LAQ824 treatment was supplemented during the culture of SCNT embryos. The reprogramming levels were measured by immunofluorescence and quantified by image J software. Relative expression levels of 18 genes were analyzed by quantitative real-time PCR. Results: 100 nM LAQ824 treatment of post-activation SCNT embryos for 24 h significantly improved the subsequent blastocyst formation rate. The LAQ824 treatment enhanced histone 3 lysine 9 (H3K9) levels, histone 4 lysine 12 (H4K12) levels, and reduced global DNA methylation levels as well as anti-5-methylcytosine (5-mC) at the pseudo-pronuclear and 2-cell stages. Furthermore, LAQ824 treatment positively regulated the mRNA expression of genes for histone acetylation (HAT1, HDAC1, 2, 3, and 6). DNA methylation (DNMT1, 3a and 3b), development (Pou5f1, Nanog, Sox2, and GLUT1) and apoptosis (Bax, Bc12, Caspase 3 and Bak) in blastocysts. Conclusion: Optimum exposure (100 nM for 24 h) to LAQ824 post activation improved the in vitro development of porcine SCNT embryos by enhancing levels of H3K9 and H4K12, reducing 5-mC, and regulating gene expression. (C) 2017 The Author(s)

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available