4.6 Article

Dipeptidyl Peptidase-4 Regulates Hematopoietic Stem Cell Activation in Response to Chronic Stress

Journal

Publisher

WILEY
DOI: 10.1161/JAHA.117.006394

Keywords

glucagon-like peptide-1; inflammation; stress

Funding

  1. Scientific Research Fund of the Chinese Ministry of Education [81560240, 81460082]
  2. Ministry of Education, Culture, Sports, Science and Technology of Japan [15H04801, 15H04802]
  3. Grants-in-Aid for Scientific Research [15H04801, 15H04802] Funding Source: KAKEN

Ask authors/readers for more resources

Background-DPP4 ( Dipeptidyl peptidase-4)-GLP-1 (glucagon-like peptide-1) and its receptor (GLP-1R) axis has been involved in several intracellular signaling pathways. The Adrb3 (beta 3-adrenergic receptor)/CXCL12 (C-X-C motif chemokine 12) signal was required for the hematopoiesis. We investigated the novel molecular requirements between DPP4-GLP-1/GLP-1 and Adr beta 3/CXCL12 signals in bone marrow (BM) hematopoietic stem cell (HSC) activation in response to chronic stress. Methods and Results-Male 8-week-old mice were subjected to 4-week intermittent restrain stress and orally treated with vehicle or the DPP4 inhibitor anagliptin (30 mg/kg per day). Control mice were left undisturbed. The stress increased the blood and brain DPP4 levels, the plasma epinephrine and norepinephrine levels, and the BM niche cell Adrb3 expression, and it decreased the plasma GLP-1 levels and the brain GLP-1R and BM CXCL12 expressions. These changes were reversed by DPP4 inhibition. The stress activated BM sca-1(high)c-Kit(high)CD48(low)CD150(high) HSC proliferation, giving rise to high levels of blood leukocytes and monocytes. The stress-activated HSC proliferation was reversed by DPP4 depletion and by GLP-1R activation. Finally, the selective pharmacological blocking of Adrb3 mitigated HSC activation, accompanied by an improvement of CXCL12 gene expression in BM niche cells in response to chronic stress. Conclusions-These findings suggest that DPP4 can regulate chronic stress-induced BM HSC activation and inflammatory cell production via an Adr beta 3/CXCL12-dependent mechanism that is mediated by the GLP-1/GLP-1R axis, suggesting that the DPP4 inhibition or the GLP-1R stimulation may have applications for treating inflammatory diseases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available