4.6 Article

Non-Hermitian bidirectional robust transport

Journal

PHYSICAL REVIEW B
Volume 95, Issue 1, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.95.014201

Keywords

-

Ask authors/readers for more resources

Transport of quantum or classical waves in open systems is known to be strongly affected by non-Hermitian terms that arise from an effective description of system-environment interaction. A simple and paradigmatic example of non-Hermitian transport, originally introduced by Hatano and Nelson two decades ago [N. Hatano and D. R. Nelson, Phys. Rev. Lett. 77, 570 (1996)], is the hopping dynamics of a quantum particle on a one-dimensional tight-binding lattice in the presence of an imaginary vectorial potential. The imaginary gauge field can prevent Anderson localization via non-Hermitian delocalization, opening up a mobility region and realizing robust transport immune to disorder and backscattering. Like for robust transport of topologically protected edge states in quantum Hall and topological insulator systems, non-Hermitian robust transport in the Hatano-Nelson model is unidirectional. However, there is not any physical impediment to observe robust bidirectional non-Hermitian transport. Here it is shown that in a quasi-one-dimensional zigzag lattice, with non-Hermitian (imaginary) hopping amplitudes and a synthetic gauge field, robust transport immune to backscattering can occur bidirectionally along the lattice.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available