4.5 Article

Collective excitations of dipolar gases based on local tunneling in superlattices

Journal

CHEMICAL PHYSICS
Volume 482, Issue -, Pages 303-310

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.chemphys.2016.08.026

Keywords

-

Funding

  1. Deutsche Forschtmgsgemeinschaft (DFG) [SFB 925]

Ask authors/readers for more resources

The collective dynamics of a dipolar fermionic quantum gas confined in a one-dimensional double-well superlattice is explored. The fermionic gas resides in a paramagnetic-like ground state in the weak interaction regime, upon which a new type of collective dynamics is found when applying a local perturbation. This dynamics is composed of the local tunneling of fermions in separate supercells, and is a pure quantum effect, with no classical counterpart. Due to the presence of the dipolar interactions the local tunneling transports through the entire superlattice, giving rise to a collective dynamics. A well-defined momentum-energy dispersion relation is identified in the ab-initio simulations demonstrating the phonon-like behavior. The phonon-like characteristic is also confirmed by an analytical description of the dynamics within a semiclassical picture. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available