4.7 Article

Ensemble Learning With Weak Classifiers for Fast and Reliable Unknown Terrain Classification Using Mobile Robots

Journal

IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS
Volume 47, Issue 11, Pages 2933-2944

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TSMC.2016.2531700

Keywords

Ensemble learning; mobile robot; terrain classification

Ask authors/readers for more resources

We propose a lightweight and fast learning algorithm for classifying the features of an unknown terrain that a robot is navigating in. Most of the existing research on unknown terrain classification by mobile robots relies on a single powerful classifier to correctly identify the terrain using sensor data from a single sensor like laser or camera. In contrast, our proposed approach uses multiple modalities of sensed data and multiple, weak but less-complex classifiers for classifying the terrain types. The classifiers are combined using an ensemble learning algorithm to improve the algorithm's training rate as compared to an individual classifier. Our algorithm was tested with data collected by navigating a four-wheeled, autonomous robot, called Explorer, over different terrains including brick, grass, rock, sand, and concrete. Our results show that our proposed approach performs better with up to 63% better prediction accuracy for some terrains as compared to a support vector machine (SVM)-based learning technique that uses sensor data from a single sensor. Despite using multiple classifiers, our algorithm takes only a fraction (1/65) of the time on average, as compared to the SVM technique.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available