4.8 Article

Molybdenum-Doped PdPt@Pt Core-Shell Octahedra Supported by Ionic Block Copolymer-Functionalized Graphene as a Highly Active and Durable Oxygen Reduction Electrocatalyst

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 9, Issue 2, Pages 1524-1535

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.6b13299

Keywords

molybdenum doping; multimetallic nanocrystals; functionalized graphene; octahedra; core-shell structures; electrocatalysts; fuel cells

Funding

  1. Industrial Strategic Technology Development Program - Ministry of Trade, Industry & Energy (MI, Korea) [10041850]
  2. Nano Material Technology Development Program through the National Research Foundation of Korea (NRF) - Ministry of Science, ICT, and Future Planning [2016M3A7B4027805]
  3. Korea Evaluation Institute of Industrial Technology (KEIT) [10041850] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

Development of highly active and durable electrocatalysts that can effectively electrocatalyze oxygen reduction reactions (ORR) still remains one important challenge for high-performance electrochemical conversion and storage applications such as fuel cells and metal-air batteries. Herein, we propose the combination of molybdenum-doped PdPt@Pt core-shell octahedra and the pyrene-functionalized poly(dimethylaminoethyl methacrylate)-b-poly[(ethylene glycol) methyl ether methacrylate] ionic block copolymer-functionalized reduced graphene, oxide (Mo-PdPt@Pt/IG) to effectively augment the interfacial cohesion of both components using a tunable ex situ mixing strategy. The rationally designed Mo-PdPt@Pt core shell octahedra have unique compositional benefits, including segregation of Mo atoms on the vertexes and edges of the octahedron and 2-3 shell layers of Pt atoms on a PdPt alloy core, which can provide highly active sites to the catalyst for ORR. along with enhanced electrochemical stability. In addition, the ionic block copolymer functionalized graphene can facilitate intermolecular charge transfer and. good stability of metal NPs, which arises from the ionic block copolymer interfacial layer. When the beneficial features of the Mo-PdPt@Pt and IG are combined, the Mo-PdPt@Pt/IG exhibits substantially enhanced activity and durability for ORR. relative to those of commercial Pt/C. Notably, the Mo-PdPt@Pt/IG shows mass activity 31-fold higher than that of Pt/C and substantially maintains high activities after 10 000 cycles of intensive durability testing. The current study highlights the crucial strategies in designing the highly active and durable Pt-based octahedra and effective combination with functional graphene supports toward the synergetic effects on ORR.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available