4.7 Article

Tensile properties of novel carbon/glass hybrid thermoplastic composite rods

Journal

COMPOSITE STRUCTURES
Volume 161, Issue -, Pages 23-31

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.compstruct.2016.11.042

Keywords

Carbon fiber; Glass fiber; Thermoplastic epoxy; Hybrid; Tensile properties; Weibull modulus

Funding

  1. Japan Science and Technology Agency (JST)

Ask authors/readers for more resources

Novel carbon/glass hybrid thermoplastic composite rods consisting of unidirectional PAN-based carbon fiber (T700SC), braids of E-class glass fibers, and thermoplastic epoxy matrix have been developed. Three types of hybrid rods with differing carbon/glass ratios (24K1P, 24K2P, and 24K3P) were fabricated. The cross-sectional morphologies of the hybrid rods were observed using a digital microscope. Volume fractions of carbon fiber, glass fiber, matrix, and void of the hybrid rods were estimated using a specific gravity measurement via ethanol immersion and a thermogravimetric analysis. The tensile properties and fracture behavior of the hybrid rods were investigated. For all hybrid rods, the stress applied to the specimen was nearly linearly proportional to the strain until failure, with a tensile modulus of 65 (24K1P), 87 (24K2P), and 91 GPa (24K3P) and tensile strengths of 1.42 (24K1P), 1.80 (24K2P), and 1.84 GPa (24K3P). The tensile modulus and strength increased with increasing carbon fiber volume fraction. The Weibull statistical distribution of tensile strength for the hybrid rods was examined. The Weibull modulus of the tensile strengths for the hybrid rods were 23.77 (24K1P), 27.29 (24K2P), and 32.50 (24K3P). The Weibull modulus increased with increasing tensile strength and decreasing void volume fraction of the hybrid rods. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available