4.8 Article

Cellulose Nanofibrils from Nonderivatizing Urea-Based Deep Eutectic Solvent Pretreatments

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 9, Issue 3, Pages 2846-2855

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.6b13625

Keywords

cellulose nanofibrils; deep eutectic solvents; pretreatments; films; mechanical properties

Ask authors/readers for more resources

Deep eutectic solvents (DESs) are a fairly new class of green solvents applied in various fields. This study investigates urea-based DES systems as novel pretreatments for cellulose nanofibril production. In the experiments, deep eutectic systems having urea and ammonium thiocyanate or guanidine hydrochloride as a second component were formed at 100 degrees C and then applied to disintegrate wood-derived cellulose fibers. The DES-pretreated fibers were nanofibrillated into three different levels of mechanical treatments with a microfluidizer, and their properties were analyzed. Moreover, nanofibril films were fabricated by solvent casting method. Both DES systems were able to loosen and swell the cellulose fiber structure as indicated by the increase in the lateral dimension of the fibers. Nonpretreated birch cellulose fibers had difficulties in mechanical nano fibrillation as clogging of the chamber occurred often. However, cellulose nanofibrils with widths ranging from 13.0 to 19.3 nm were successfully fabricated from DES-pretreated fibers with both systems. Translucent nanofibril films generated from DES pre-treated cellulose nanofibrils had good thermal stability and mechanical properties, with tensile strengths of approximately 135-189 MPa and elastic modulus of 6.4-7.7 GPa. Consequently, both urea-based DESs showed a high potential as environmentally friendly solvents in the manufacture of cellulose nanofibrils.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available