4.8 Article

Simple but Effective Way To Enhance Photoelectrochemical Solar-Water-Splitting Performance of ZnO Nanorod Arrays: Charge-Trapping Zn(OH)2 Annihilation and Oxygen Vacancy Generation by Vacuum Annealing

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 9, Issue 3, Pages 2317-2325

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.6b12555

Keywords

ZnO photoanode; photoelectrochemical cell; water splitting; vacuum annealing; oxygen vacancy in metal oxide

Funding

  1. National Research Foundation of Korea [NRF-2016R1A4A1010735]

Ask authors/readers for more resources

This study presents an effective and the simplest method to substantially improve the photoelectrochemical water-splitting ability of hydrothermally grown ZnO nanorod arrays (NRAs). In the hydrothermal growth of ZnO NRAs, unwanted Zn(OH)(2) species are formed, which act as trapping sites of photoexcited charges. We found that those inherent charge-trapping sites could be annihilated by the desorption of the hydroxyl groups upon vacuum annealing above 200 degrees C, which resulted in an enhancement of the charge-separation efficiency and photocurrent density. Another drastic increase in the photocurrent density occurred when ZnO NRAs were treated with annealing at higher temperature (700 degrees C), which can be attributed to,the introduced oxygen vacancies acting, as shallow donors in the ZnO crystal lattice. The removal of the charge-trapping Zn(OH)(2) and the generation of oxygen vacancies were confirmed by photoluminescence (PL) and XPS analyses. The ZnO NRAs treated by this simple method yield a photocurrent density of 600 mu A/cm(2) at 1.23 V-RHE under 1 sun illumination, which is 20 times higher than that obtained from as-grown ZnO NRAs. This, study presents a highly efficient way of increasing the bulk electric conductivity and photoelectrochemical activity of metal oxide nanorods, without requiring the introduction of any extrinsic dopants.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available