4.6 Article

Voxel-Based Diagnosis of Alzheimer's Disease Using Classifier Ensembles

Journal

IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS
Volume 21, Issue 3, Pages 778-784

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JBHI.2016.2538559

Keywords

Alzheimer's disease; feature selection; functional magnetic resonance imaging; machine learning; supervised classification

Ask authors/readers for more resources

Functional magnetic resonance imaging (fMRI) is one of the most promising noninvasive techniques for early Alzheimer's disease (AD) diagnosis. In this paper, we explore the application of different machine learning techniques to the classification of fMRI data for this purpose. The functional images were first preprocessed using the statistical parametric mapping toolbox to output individual maps of statistically activated voxels. A fast filter was applied afterwards to select voxels commonly activated across demented and nondemented groups. Four feature ranking selection techniques were embedded into a wrapper scheme using an inner-outer loop for the selection of relevant voxels. The wrapper approach was guided by the performance of six pattern recognition models, three of which were ensemble classifiers based on stochastic searches. Final classification performance was assessed from the nested internal and external cross-validation loops taking several voxel sets ordered by importance. Numerical performance was evaluated using statistical tests, and the best combination of voxel selection and classification reached a 97.14% average accuracy. Results repeatedly pointed out Brodmann regions with distinct activation patterns between demented and nondemented profiles, indicating that the machine learning analysis described is a powerful method to detect differences in several brain regions between both groups.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available