4.7 Article

Catalytic degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) by nano-Fe2O3 activated peroxymonosulfate: Influential factors and mechanism determination

Journal

CHEMOSPHERE
Volume 169, Issue -, Pages 568-576

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2016.11.038

Keywords

Peroxymonosulfate; 2,4-Dichlorophenoxyacetic acid; Hematite; Sulfate radical; Photocatalysis

Funding

  1. AJUMS [ETRC-9432]
  2. Ahvaz Jundishapur University of Medical Sciences (AJUMS)

Ask authors/readers for more resources

2,4-Dichlorophenoxyacetic acid (2,4-D) is one of the most applicable herbicides in the world. Therefore, its residue in aquatic environment threatens the human health and ecosystems. In this study, Fe2O3 (hematite) nanoparticles (HNPs) were synthesized, and the characteristics of the obtained HNPs were determined using X-ray powder diffraction (XRD), field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET) technique, and particle size analyzer (PSA). The catalytic activity of HNPs was evaluated for the activation of peroxymonosulfate (PMS) for the degradation of 2,4-D. The effects of the operating parameters were studied for the PMS/HNPs system. The results showed that the acidic condition provided higher efficiency, while overdosing of PMS had a scavenging effect. The PMS/HNPs showed high efficiency in comparison with the homogeneous forms of iron (Fe2+ and Fe3+). Reusability of HNPs was studied in five consequent usages. The presence of the anions (chloride, nitrate, and hydrogen phosphate) reduced the 2,4-D degradation. Moreover, the catalytic activity of HNPs was also investigated in the presence of other oxidants. UV irradiation increased the function of PMS/HNPs and its mechanism was described. The order of 2,4-D removal for the oxidants was PMS > persulfate > H2O2 > percarbonate. A total of 29.7% of 2,4-D chlorine content was released during the destruction of 2,4-D. The quenching study showed that sulfate radical was the major agent in the degradation of 2,4-D. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available