4.3 Article

Bacterial Cellulose-chitosan Composite Hydrogel Beads for Enzyme Immobilization

Journal

BIOTECHNOLOGY AND BIOPROCESS ENGINEERING
Volume 22, Issue 1, Pages 89-94

Publisher

KOREAN SOC BIOTECHNOLOGY & BIOENGINEERING
DOI: 10.1007/s12257-016-0381-4

Keywords

bacterial cellulose; chitosan; hydrogel bead; lipase; immobilization

Funding

  1. Konkuk University

Ask authors/readers for more resources

In this work, we report the preparation of bacterial cellulose (BC)-chitosan composite hydrogel beads by co-dissolution of BC and chitosan in 1-ethyl-3-methylimidazolium acetate and subsequent reconstitution with distilled water. The BC-chitosan hydrogel beads were used as enzyme supports for immobilizing Candida rugosa lipase by physical adsorption and covalent cross-linking. BC-chitosan hydrogel beads immobilized lipase more efficiently than microcrystalline cellulose (MCC)-chitosan hydrogel beads. The amount of protein adsorbed onto BC-chitosan beads was 3.9 times higher than that adsorbed onto MCC-chitosan beads, and the catalytic activity of lipase was 1.9 times higher on the BC-chitosan beads. The lipase showed the highest thermal and operational stability when covalently cross-linked on BC-chitosan hydrogel beads. The half-life time of the lipase cross-linked on BC-chitosan bead at 60 degrees C was 22.7 times higher than that of free lipase. Owing to their inherent biocompatibility and biodegradability, the BC-chitosan composite hydrogel beads described here could be used to immobilize proteins for various biomedical, environmental, and biocatalytic applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available