4.5 Article

Claudin-5,-7, and-18 suppress proliferation mediated by inhibition of phosphorylation of Akt in human lung squamous cell carcinoma

Journal

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.bbamcr.2016.11.018

Keywords

Akt; Claudins; Lung squamous carcinoma; Cell proliferation

Funding

  1. JSPS KAKENHI [15H04657]
  2. Takeda Science Foundation
  3. Ichiro Kanehara [14KI 154]
  4. Sagawa Foundation for Promotion of Cancer Research
  5. Grants-in-Aid for Scientific Research [15H04657] Funding Source: KAKEN

Ask authors/readers for more resources

Abnormal expression of claudin (CLDN) subtypes has been reported in various solid cancers. However, it is unknown which subtype plays a key role in the regulation of proliferation in cancer cells. The expression of CLDN3-5, 7, and 18 in human lung squamous carcinoma tissues was lower than that in normal tissue. Here, we examined which combination of exogenous CLDNs expression inhibits proliferation and the molecular mechanism using human lung squamous RERF-LC-AI cells. Real-time polymerase chain reaction and western blotting showed that CLDN3-5, 7, and 18 are little expressed in RERF-LC-Al cells. In the exogenously transfected cells, CLDN5, 7, and 18 were distributed in the cell-cell contact areas concomitant with ZO-1, a tight junctional scaffolding protein, whereas CLDN3 and 4 were not. Cell proliferation was individually and additively suppressed by CLDN5, 7, and 18. The expression of these CLDNs showed no cytotoxicity compared with mock cells. CLDN5, 7, and 18 increased p21 and decreased cyclin Dl, resulting in the suppression of cell cycle Gl-S transition. The expression of these CLDN5 inhibited phosphorylation of Akt without affecting phosphorylated ERK1/2. Furthermore, these CLDNs inhibited the nuclear localization of Akt and its association with 3-phosphoinositide-dependent protein kinase-1 (PDK1). The suppression of G1-S transition caused by CLDN5, 7, and 18 was rescued by the expression of constitutively active-Akt. We suggest that the reduction of CLDN5, 7, and 18 expression loses the suppressive ability of interaction between PDK1 and Akt and causes sustained phosphorylation of Akt, resulting in the disordered proliferation in lung squamous carcinoma cells. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available